skip to main content


Search for: All records

Creators/Authors contains: "Chand, Duli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ground-level ozone (O3) is a key atmospheric gas that controls the oxidizing capacity of the atmosphere and has significant health and environmental implications. Due to ongoing reductions in the concentrations of O3 precursors, it is important to assess the variables influencing baseline O3 to inform pollution control strategies. This study uses a statistical model to characterize daily peak 8 h O3 concentrations at the Mount Bachelor Observatory (MBO), a rural mountaintop research station in central Oregon, from 2006–2020. The model was constrained by seven predictive variables: year, day-of-year, relative humidity (RH), aerosol scattering, carbon monoxide (CO), water vapor (WV) mixing ratio, and tropopause pressure. RH, aerosol scattering, CO, and WV mixing ratio were measured at MBO, and tropopause pressure was measured via satellite. For the full 15-year period, the model represents 61% of the variance in daily peak 8 h O3, and all predictive variables have a statistically significant (p < 0.05) impact on daily peak 8 h O3 concentrations. Our results show that daily peak 8 h O3 concentrations at MBO are well-predicted by the model, thereby providing insight into what affects baseline O3 levels at a rural site on the west coast of North America.

     
    more » « less